The information contained in this presentation is provided solely for the reader’s general knowledge. The information is not intended to be a comprehensive review of all matters and developments concerning LiCo Energy Metals Inc. All information is offered on a “best intentions” basis. No securities commission or other regulatory authority in Canada or any other country or jurisdiction has in any way reviewed this information and no representation or warranty is made by LiCo Energy Metals. To that effect, LiCo Energy Metals is not responsible for the content of sites that can be reached through links on this site. This presentation may include “forward looking statements”. All statements, other than statements of historical fact, included herein, including without limitation, statements regarding exploration results, future plans and objectives of LiCo Energy Metals are forward looking statements that involve risks and uncertainties. There can be no assurance that such statements will prove to be accurate and actual results and future events could differ materially from those anticipated in such statements.

LiCo Energy Metals does not make any representations, warranties or guarantees, express or implied, regarding the accuracy, completeness, timeliness, non-infringement, or merchantability or fitness for a particular purpose or use of any information contained in this presentation or of any information available on web sites that are accessible by links found on this site. Furthermore, the information in no way should be construed or interpreted as, or as a part of, an offering or solicitation of securities. Investors are advised to discuss all of their stock purchases with a registered securities broker or personal finance professional prior to investing. No obligation, responsibility or liability shall be incurred by LiCo Energy Metals or any of its officers, directors, employees or agents for any loss or damage whatsoever, whether incidental, special, indirect, consequential, punitive, exemplary, or for lost profits in connection with, caused by or arising from any delays, inaccuracies, errors or omissions in or infringement by, or from any use of, or reliance on such information available in this presentation, the links to other sites contained in this presentation nor any information available on such sites.

The Information in this presentation with respect to the Purickuta Project, Chile, has been reviewed and approved by Alan J. Morris, P. Geo and Eduardo Alvarez, independent qualified persons in accordance with National Instrument 43-101.

The Information in this presentation with respect to the Black Rock Desert and Dixie Valley Projects, Nevada, has been reviewed and approved by Alan J. Morris, P. Geo, an independent qualified person in accordance with National Instrument 43-101.
The price for lithium has surged due to the demand for Electric Vehicles

- With its high reactivity and extremely low weight, it makes an effective electric car battery
- Electric car companies choose lithium-ion batteries because of its scale and production cost
- Elon Musk has stated that Tesla “would basically need to absorb the entire world’s lithium-ion production”
- Although lithium is used in other industries such as pharmaceuticals and lubricants, the most important use of lithium is in rechargeable lithium-ion batteries for electric vehicles, grid-scale energy storage, cellphones, laptops, cameras, and many other modern devices

A Tesla Model S with a 70kWh battery uses 63 kilograms of lithium
Throughout history, most of the world’s lithium has been produced by an oligopoly of producers - often referred to as the “Big 3” - Albermarle (ALB), Sociedad Quimica y Minera de Chile (SQM), and FMC Corp (FMC).

High and robust pricing in this market has been due to concerns over future availability.

The deficit in lithium supplies around the world continue to price the metal higher each year.
LITHIUM — JUST AN AFTERTHOUGHT

UTILITY STORAGE: THE FALLING COST OF PRODUCTION

SOLAR PV - $/Wh

LITHIUM-ION CELL - $/kWh
IMPORTANT LITHIUM TERMINOLOGY

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LITHIUM CARBONATE</td>
<td>The primary base chemical produced by the lithium industry used in a wide range of end markets including lithium-ion battery cathodes, ceramics and pharmaceuticals.</td>
</tr>
<tr>
<td>LITHIUM FEEDSTOCK</td>
<td>This refers to lithium concentrate, the majority of which is converted into lithium chemicals for a wide range of end markets including lithium-ion batteries.</td>
</tr>
<tr>
<td>LITHIUM HYDROXIDE</td>
<td>The second largest chemical produced by the lithium industry, traditionally used in the production of greases, but also competes with lithium carbonate in the lithium-ion cathode sector, specifically NCA chemistry.</td>
</tr>
<tr>
<td>LITHIUM CHEMICALS</td>
<td>This refers to any downstream chemicals that are produced from spodumene feedstock or lithium brine.</td>
</tr>
</tbody>
</table>
Salar de Atacama is a salt flat encompassing 3,000 km², being about 100 km long and 80 km wide. The salar possesses a very high grade of both lithium (1,840mg/l) and potassium (22,630mg/l). It has a high rate of evaporation (3,200mm per year) and extremely low annual rainfall (15mm average per year). These characteristics make Atacama’s finished lithium carbonate easier and cheaper to produce than its peer group globally.

Chile’s political, social, and economic macroclimate has been stable for decades, making it one of South America’s most prosperous nations. Chile is also home to many of the world’s largest and highest grade resources of lithium making the country well positioned to be the price setter for lithium in both rising and falling markets.
Option to acquire an initial 50% interest in the Purickuta Project, including an option to commence construction of a plant to achieve production at a minimum rate of 2,000 TPA or up to a maximum rate of 4,000 TPA.

Near production opportunity situated in the highest-grade lithium salar in the world.

One of few “exploitation concessions” granted within the Salar de Atacama, where nearly 37% of the world’s Lithium is produced.

Approx. 22km from SQM and Albermarle’s large-scale production facilities that collectively produce over 62,000 tonnes of Lithium Carbonate Equivalent annually, and account for 100% of Chile’s current lithium output.

Close to power, labour, communications, transportation and other infrastructure.
1. the appearance of both a low-cost resource definition opportunity and a near term production opportunity;

2. the overall project size fits well within the capability of a junior company seeking to quickly define reserves and establish production facilities;

3. the property is well situated within the Salar de Atacama, the highest-grade lithium salar in the world;

4. within the Salar de Atacama, lithium brines exist within 140 feet of surface resulting in low costs of exploration and extraction;

5. the Purickuta Concession lies relatively near existing pumping and solar evaporation installations;

6. the Purickuta Concession is close to power, labour, communications, transportation and other infrastructure.
The western arm of the Black Rock Desert covers an area of about 2,000 square kilometers and contains 5 of the 30 currently listed Known Geothermal Resource Areas in Nevada. The Property covers an area of playa underlain by a moderately deep basin interpreted from gravity and seismic surveys indicating a maximum thickness of valley-fill deposits of about 1,200 m/3,600 ft. A high salt content prevents any significant vegetation from growing on the playa surface. Locally, the basin is being fed in part by boiling springs and siliceous sinter containing strongly anomalous Lithium values (5mg/l) that flank the property on the west side. (U.S. GEOLOGICAL SURVEY Open-File Report 81-918.) While these lithium values are well below those of producing lithium brines, they do represent a significant source of metal available for evaporative concentration within the playa basin.
Placer Claims: 199
1,610 ha (3,980 acres)

70% earn-in option agreement, 3% net smelter royalty of 199 claims with Nevada Energy Metals Inc.

The geologic setting combined with the presence of lithium in both active geothermal fluids and surface salts within the Black Rock Desert property match characteristics of lithium brine deposits at Clayton Valley, Nevada and in South America. Geothermal fluids adjoining the claims are known to contain anomalous lithium values and a recently completed surface silt sampling program confirmed values containing up to 520 ppm lithium.
Initially, the lithium target in this basin was highly conceptual, however, recent exploration results are highly encouraging and warrant a detailed exploration drilling for a Clayton Valley type brine deposit.

The previous sample points were arranged on a grid pattern of 11 lines spaced 400 meters apart with stations every 200 meters along the lines. One hundred and seventy (170) soil samples were collected. Results ranged from 82.8 to 520 parts per million (ppm) lithium with a median value of 182 ppm. **Twelve samples carried over 300 ppm Li.**
Dixie Valley is located in west central Nevada, about 160 km east northeast of Reno.

Dixie Valley is fault bounded, with the most movement along Stillwater Range (west) side of the valley.

Dixie Valley is home to a large and long-lived geothermal system that is still active.

Although several workers have studied the geology of Dixie Valley in some detail, the lithium potential has not been specifically addressed.
Placer Claims: 348
2,817 hectares/6,960 acres

Of seven characteristics of Lithium Brine deposits outlined in the USGS deposit model, all seven are found in Dixie Valley:

1. Arid Climate
2. Closed Basin containing a playa or salar
3. Tectonically driven subsidence
4. Associated igneous or geothermal activity
5. Suitable lithium source rocks
6. One or more adequate aquifers
7. Sufficient time to concentrate brine
Option to acquire 100%, 3% net smelter royalty of 348 claims in Dixie Valley with Nevada Energy Metals Inc.

Early stage, conceptual lithium brine project

The target model is a lithium brine model based on Clayton Valley, Nevada and several basins in South America

Of seven characteristics of Lithium Brine deposits outlined in the USGS deposit model, all seven are found in Dixie Valley

Heavier brines sink into the deeper levels of the basin, potentially forming subsurface pools of lithium rich fluids.